108. Dicyclopentadienyl-tin and -lead.

By H. P. FRITZ and E. O. FISCHER.

The infrared spectra of dicyclopentadienyl-tin and -lead, in the range 2-40 μ , are recorded and compared with other published values. The results are consistent with previously suggested structures.

ON the basis of the similarity of the infrared spectra, Fischer and his co-workers 1-3 postulated a sandwich structure, similar to that of ferrocene (I), for dicyclopentadienyltin 4 and $-lead.^5$ They further suggested that the dipole moments of these compounds indicated that the rings were at an angle to one another (II).^{3,6} In view of criticism by Dave, Evans, and Wilkinson 7 we have now extended our earlier measurements of the

- ¹ Fischer and Piesbergen, Z. Naturforsch., 1956, **11**b, 758.
 ² Fischer, Z. angew. Chem., 1957, **69**, 715.
 ³ Fischer and Schreiner, Chem. Ber., 1959, **92**, 938.

- ⁴ Fischer and Grubert, Z. Naturforsch., 1956, 116, 423.
 ⁵ Fischer and Grubert, Z. anorg. Chem., 1956, 286, 237.
 ⁶ Weiss, Z. anorg. Chem., 1956, 286, 236.
- ⁷ Dave, Evans, and Wilkinson, J., 1959, 3684.

infrared spectra. It is well known that the influence of solvents on relatively unstable metal dicyclopentadienyls, which do not have a filled inert-gas configuration for the central atom, must not be overlooked. Thus, the nuclear magnetic resonance spectra of dicyclopentadienyl-mercury^{8,7} or -beryllium⁹ show only one proton line, although structures

involving σ-bonded cyclopentadienyl rings are probable on the basis of the infrared spectra. Dicyclopentadienyliron dicarbonyl shows only two proton signals,¹⁰ one from the π -bonded and one from the σ -bonded ring. In each case a much more complicated nuclear magnetic resonance spectrum would be expected. In infrared spectroscopy, change of solvent sometimes causes remarkable changes in intensity and position of bands. The possibility of formation of addition compounds also must be considered, if the compounds show any donor or acceptor properties.*

For these and other reasons we regard infrared measurements on solutions of this special kind of polar metal dicyclopentadienyl as convenient though sometimes unreliable evidence.

Wilkinson and his co-workers 7 used tetrachloroethylene and carbon disulphide as solvents. The former is suitable when pure, but some important spectral regions cannot be investigated because of absorption by solvent. Carbon disulphide has good solvent properties too, but also, we find, a tendency to form addition compounds with the solute. We therefore conclude that infrared measurements of extremely sensitive and polar compounds are best carried out under the mild conditions of the Nujol or "Hostaflon" (fluorolube) mull technique or on halide discs, if air and moisture can be rigorously excluded. This is ensured in our laboratory, where sensitive substances are handled by means of Schlenk tubes and glove box.

Previously,¹¹ we listed, amongst others, infrared spectra of the tin and lead compounds in potassium bromide discs ¹² and assigned some of the normal frequencies by analogy with ferrocene.¹³ We now report the spectra of these two compounds, obtained from freshly resublimed samples as mulls in Nujol and "Hostaflon," respectively, in the range $2-40 \mu$. The measurements in the far-infrared region are part of an investigation of the position of the metal-ring frequencies of $M(C_5H_5)_2$ -compounds.¹⁴ In the Table we include the results reported by Wilkinson and his co-workers,⁷ since they claimed that our results were " so much at variance with solution data " given earlier 15 and by them and therefore were " unreliable."

The relative similarity of these spectra with those of ferrocenes was emphasized earlier by Fischer and his co-workers.^{1,3}

Clearly spectra of solutions can only be accepted with some reservation. Whilst our mull spectra show a definite difference between the tin and the lead compound, especially in the characteristic region of the CH-deformations,^{13,11} the spectra recorded by Wilkinson and his co-workers give very similar values for the two compounds. One cannot explain this difference as that usual between spectra of solid and solution. It is rather the result of an equalizing effect of the solvents on those polar and weakly bonded compounds.

- ⁸ Strohmeier and Lemmon, Z. Naturforsch., 1959, 14a, 109.
- ⁹ Fischer and Hofmann, unpublished work.

- Piper and Wilkinson, J. Inorg. Nuclear Chem., 1956, 3, 104.
 Fritz, Chem. Ber., 1959, 92, 780.
 Dr. O. Vohler, Anorg. Inst. T.H., München, kindly supplied these spectra.
- ¹³ Lippincott and Nelson, Spectrochim. Acta, 1958, 10, 307.
- 14 Fritz and Schneider, Chem. Ber., 1960, 93, 1171.
- ¹⁵ Lindstrom and Barusch, 131st Amer. Chem. Soc. Meeting, 1957, Abstr. 77, as cited in ref. 7.

^{*} For recent results in this connexion see Strohmeier and von Hobe (Z. Elektrochem., 1960, 64, 945).

Infrared spectra of dicyclopentadienyl-tin and -lead.

	$Sn(C_5H_5)_2$				$Pb(C_5H_5)_2$			
KBr	Soln.			KBr Soln.				
disc	Mull	C ₂ Cl ₄ *	CS ₂ *	disc	Mull	C ₃ Cl ₄ *	CS ₂ *	
clibe	1.1411	3100sh	3100sh			3090sh	3090sh	
3061w	3 065m	3094s	3094s		3021w	3082s	3082s	
30010	2967sw	00013	00015		00110	00015	000-5	
	2924sw	2919w	2918w	2914w		2917w	2917w	
	2882sw	-010.0		2851sw	2890w			
	2778sw							
	2688sw	2695w	2695w		2632 sw	2680w		
	2410sw							
	2356sw				2310sw			
	2262sw	2280w			2288 sw	2278w		
	2195 sw	2210w				2200w		
	2062 sw	2085 w			2088sw	2080w		
	1965 sw							
	1894sw				1880 sw			
	1754w	1750m	1750m					
1739w	1745w				1736w	1732m	1745m	
					1721w		1720m	
	1689 sw				1706 sw			
	1656sw							
	1642m			İ	1000			
1631w	1634m				1639w	1000		
	1505				1613w	1622 m		
	1585sw							
	1565sw				1546 sw			
	1550w	1590			1540sw 1529sw			
	$1529 \mathrm{sw}$ $1515 \mathrm{sw}$	1532m			15235w 1513sw	1515m		
	1515Sw 1504sw				1502sw	101011		
	1004SW	1482w			1493sw	1482w		
1424m	1428s	1426s			140050	1427s		
142411	14205	14205		1418w	1416m	11215		
1363m	1366sw		13 60m	1382w	1110111		1351m	
100011	1342w		1340m	1001	1335sw			
	1258w	1260w	1260w		1263sw	1255w	1260w	
	12001	1228w	1228w			1228w	1228w	
	1198sw		1193sw	1	1192 sw		1190sw	
	1167w		1156w		1164 w		1156w	
					1149 sw			
1112m	1114s		1112s	1111w	1112m		1113s	
	1094 sw						1082 sw	
1059w	1060w	$1055 \mathrm{w}$	1055w	1057sw	1059w	1055w	$1052 \mathrm{w}$	
1003s	1004s		1002s	1002m	1007s		1005s	
959w	960 sw				962sw			
	936sw				929sw			
914w	916sw			913sw	915sw			
890w	890w			898w	890sw			
					881sw			
0.0.5	0.0.7			0.9.6	861sw			
8 37 w	835w		805w	836w	8 3 8w		805w	
700-	818shw		805w 780m				805w 780w	
792s	788shs		78011	769sh	766 sh		180W	
751s	$770\mathrm{sh}$ $758\mathrm{s}$		748ss	7695h 756s	7665h 752s		750ss	
7918	1005		14022	750s 744s	752s 740s		10055	
664w	663w	66 6 w	666w	663w	662w	666w	66 6 w	
544sw	544swbr	000w	0000	000	588swbr	0000	000W	
01101	260mbr				0000000			
	= 5511101			•				

* Dave, Evans, and Wilkinson, ref. 7.

 $w=weak,\ m=medium,\ s=strong,\ sw=very$ weak, ss=very strong, sh=shoulder, and br=broad band.

Dave, Evans, and Wilkinson obviously did not consider this, and the question arises whether they measured the spectra of the pure compounds in their normal state at all.

Wilkinson and his co-workers ⁷ state, quite correctly, that it should be possible to distinguish theoretically between structures (I) [symmetry D_{5d} or D_{5h}] and (II) [symmetry

 C_{2v}], and another structure (III), which could be angular [C_i , C_{2v} or other low symmetry].

Structure (III) can be excluded because of the types and low number of intensive bands observed in the infrared spectrum.

For structure (II), for example, with the two rings eclipsed, the selection rules would predict 44 of the 57 possible fundamentals to be active in the infrared region, 7 of which would belong to "skeletal" frequencies of the three-mass model YXY. The 37 ligand frequencies should appear mostly in the range covered by sodium chloride optics. Slight coupling being assumed between vibrations of the two rings, several frequencies will practically coincide, thus being observed as only one band. Nevertheless, more bands should still be observable than for structure (I). Wilkinson and his co-workers ⁷ state that fewer vibrations will be infrared-active for symmetry group D_{5d} than for D_{5h} , but this is incorrect for sandwich compounds. D_{5d} and D_{5h} symmetry would allow 7 ligand- and 3 "skeletal"-frequencies in the infrared region and 15 Raman-active vibrations for each point group.

Wilkinson and his co-workers deduced that their spectra are consistent with the lower symmetry because of the increased number of bands compared with ferrocene; but their comparison was with a ferrocene spectrum of unknown concentration in carbon tetrachloride ¹³ and their assignments were incomplete. Hence, their argument is rather speculative.

There are, of course, more efficient methods to prove the absence of structure (I), one being an analysis of the combination bands. The spectra show some weak bands, which (allowing for deviations due to anharmonicity) can be explained as binary combinations of fundamental frequencies, indicating that a D_{5d} or D_{5h} structure is probably absent.

In the far-infrared region we found only one band, which can be assigned with some certainty to a fundamental frequency, for the tin compound and none for the lead compound.

If the structure of the molecules, which we assume to be analogous, were linear (I), only the doubly degenerate, asymmetric ring-tilt and the asymmetric metal-ring stretching vibration would be observable in the range to 40 μ , the doubly degenerate ring-metal-ring deformation lying at much lower frequencies.¹³

If the structure is angular (II) there would be two asymmetric ring-tilt and one metalring stretching vibrations within the same range, and the results obtained with ferrocene and ruthenocene ¹³ suggest that the remaining fundamentals of the YXY model active in the infrared region would probably lie at lower frequencies.

Since the asymmetric ring-tilt vibration does not occur lower than 400 cm.⁻¹ in all other metal dicyclopentadienyls ¹⁴ the corresponding frequencies of the tin and the lead compound will be tentatively assigned to the very weak bands at 544 and 588 cm.⁻¹, respectively, although deformation frequencies are likely to occur in the same range. Their broad contour might be due to splitting, caused by removal of the degeneracy.

Only the 260 cm.⁻¹ band of the tin compound can be assigned reasonably securely to asymmetric metal-ring stretching. In tin tetrabromide the Sn-Br stretching frequency occurs at 279 cm.⁻¹, so our assignment to metal-ring stretching can be regarded as plausible.

It is now possible to refine Fischer's earlier concept. Accepting the structure to be angular (II), we can assume a non-linear configuration YXY for the molecules if one cyclopentadienyl ligand is regarded as one point of mass Y in an approximation used for dicyclopentadienyl-iron and -ruthenium.¹³ The force constant of the metal-ring bond being taken as approximately the same as in other metal dicyclopentadienyls of comparable sensitivity,¹⁴ that is *ca.* 1.5×10^5 dynes/cm., an angle of *ca.* 108° between the two axes perpendicular to the planes of the rings is obtained.¹⁶ The assumption of a sp^2 -hybridisation for the tin atom, which Wilkinson *et al.* discuss too, seems to be in good accord with

¹⁶ Calculated by using an approximate formula given by Herzberg, "Molecular Spectra and Molecular Structure, Vol. II, Infrared and Raman Spectra of Polyatomic Molecules," van Nostrand Corp., Inc., Princeton, 1956, p. 169.

Arthur and Hui.

this value, if the deviation from 120° is considered as due to an increase of p-character for the bonding orbitals and an increase of s-character for the third sp^2 hybrid orbital, which should contain the remaining two electrons as a lone pair. Dave, Evans, and Wilkinson agree with our concept of predominantly σ -bonding with some additional π -bonding between metal atoms and rings in dicyclopentadienyltin and probably also in the lead compound.

EXPERIMENTAL

Pure samples of dicyclopentadienyl-tin ⁴ and -lead ⁵ were resublimed and immediately used for infrared spectral measurements. The Nujol had been heated for some hours in a high vacuum and was cooled in an atmosphere of purified nitrogen. The "Hostaflon" (fluorolube) was treated similarly. The infrared measurements were made on a Perkin-Elmer spectrophotometer model 21 with sodium chloride and cæsium bromide optics. In order to reduce stray light and water absorption in the far-infrared region, a "reststrahlen" filter was used, and the spectrometer and its sample compartment were flushed with dry nitrogen. The mulls were placed between sealed sodium chloride or cæsium bromide windows. The spectra of potassium bromide discs were obtained on a different spectrometer of the same model with sodium chloride optics.¹²

The authors thank the "Münchner Universitätsgesellschaft" for the purchase of the cæsium bromide prism and the "reststrahlen" filter unit, and the Farbwerke Hoechst A.G. for a gift of Hostaflon oil.

Anorg.-chem. Institut der Universität München, Meiserstr. 1, München 2, Germany.

[Received, February 11th, 1960.]